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Neural Network Modelling of the Equilibrium
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The kinetics of the equilibrium anionic polymerization of some cyclic siloxanes is modelled by using neural
networks. Feedforward neural networks with one or two hidden layers have been used to appreciate the
rates of disappearance of octamethylcyclotetrasiloxane and aminopropyl disiloxane at different catalyst
concentrations (direct modelling). Alternatively, another neural model has been developed to estimate the
amount of catalyst, which leads to an imposed final concentration of siloxane (inverse modelling).
Experimental data for the polymerization of octamethylcyclotetrasiloxane in the presence of KOH as a catalyst
and 1,3-bis(aminopropyl)tetramethyldisiloxane as a functional endblocker were used as training data sets
for neural models. Satisfactory agreement between experimental data and network predictions obtained in
validation phases proved that the projected models have good generalization capacities and, consequently,
they describe well the process.
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The recent years proved that neural networks have
become a powerful tool in chemical processes area,
especially for modelling and prediction of nonlinear
systems [1].

Usually, experimental and industrial practices use two
types of models: mechanistic models  (classical/
phenomenological models) based on the physical and
chemical features and data-based empirical models. Each
of these categories presents advantages and
disadvantages, and, in this order, a comparison of  them is
necessary. The mechanistic models present the advantage
to be valid upon a large area of operating conditions and
reflect the process phenomenology. For this reason,
whenever it is possible, the main recommendation should
be to use the physic and chemical knowledge for the
process. The disadvantages of these models, could be the
difficulties concerning the specificity of the process and
the problems in designing a system mathematical model.
The difficulties regarding the chemical process refer to
many aspects as follows: the absence of on-line testing
(measurements), the considerable delays at testing, the
possibility of many answers determined by the different
operating conditions. Concerning the design of the
mathematical model, several aspects can be mentioned:
the complexity of reactions’ mechanisms or the fact that
the phenomenology of the processes are insufficiently
known, the great number of chemical species into the
system, the great number of model equations and the
special methods in giving the solutions.

An overlooking from the studies on neural network for
modelling or control allows the observation of some
advantages: parallel organization permits solutions to
problems where multiple constraints must be satisfied
simultaneously; graceful degradation and the rules are
implicit than explicit [2].

On the other hand, the disadvantages seem to be upon
the necessity to obtain a perfect neural network with the
experimental or operational history data. Also neural
network needs large amount of good quality data for its
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training, which is normally difficult to obtain in practice.
Data sparsity, ‘overfitting’ and poor generalization are other
problems faced by researchers when using the basic neural
network alone [3]. A special attention should be to  paid
to  an uniform distribution of data throughout the design
space [4]. In the idea of identification data which cover
the whole range of the process variable, any applications
prove that if properly trained and validated, these neural
network models can be used to accurately predict the
process behaviour, hence, leading to process optimization
and control performance improvement [5].

Roy et al [6] have shown that multilayer perceptron with
at most two hidden layers can solve any non-linear problem
provided there are sufficient numbers of hidden nodes.

An important and widely studied class of semi-organic
polymers is constituted by polyorganosiloxanes.

Polyorganosiloxanes possess a variety of interesting and
desirable properties such as low glass transition
temperatures, high lubricity, UV stability, good thermal
stability, low toxicity and unique surface properties.

Two general methods are well known and widely used
for linear polysiloxane synthesis: polycondensation of
bifunctional siloxanes and ring-opening polymerization
(ROP) of cyclic oligosiloxanes [7]. ROP is the most
traditionally and significant route to obtain high molar mass
linear polysiloxanes, cyclic tetramer and trimer being
usually the starting monomers. This polymerization may
be carried out either anionically or cationically [7, 8]. In
principle, any compound that can split the siloxane bond
by ionic (either electrophilic or nucleophilic) mechanism
can initiate polymerization of cyclosiloxanes with
involvement of the positive or negative reaction centers of
the growing chains. There are a wide variety of compounds
that can initiate the ROP polymerization of cyclosiloxanes
including strong organic and inorganic acids or bases and
metal oxides [9, 10].

It is well known that, in the presence of the strong acids
or bases, the Si-O bonds in both unstrained cyclosiloxanes
and linear macromolecules (which have comparable
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energy) can be split, and a mixture of cyclic and linear
polysiloxanes will be obtained. The siloxane bonds are
continuously broken and reformed until the reaction
reaches a thermodynamic equilibrium. In the presence of
a functionalized disiloxane, oligomers having such ending
functional groups resulted, the molecular mass being
controlled by the ratio between cyclosiloxane and
disiloxane.

The anionic polymerization of cyclosiloxanes and other
cyclic compounds that contain the siloxane bond is
accomplished in most cases either in bulk or in solution,
and rarely in emulsion, in suspension, in the solid phase,
and under zone melting conditions.

The most active catalysts for the polymerization of
cyclosiloxanes are hydroxides, alcoholates, phenolates,
silanolates, siloxanolates of the alkali metals, quaternaty
ammonium and phosphonium bases and their
siloxanolates, organolithium, sodium and potassium
compounds. Besides these, other catalysts used for the
anionic polymerization of cyclosiloxanes are the alkali
metal or lead salts of carboxylic acids or the metal
derivatives of carboxylic acid esters.

The polymerization of cyclosiloxanes under the
influence of the alkali metal hydroxides has been studied
in greatest detail.

There are many kinetic studies on the polymerization
of octamethylcyclotetra- or octamethylcyclotri- siloxane (D4
and D3, respectively) in the presence of strong acid or base
catalysts carried out in order to evaluate the effect of
different parameters (monomer concentration,
temperature,  catalyst concentration, presence or absence
of a endblocker) on the equilibrium position.

Such experimental data were used in this paper for
modelling of anionic polymerization of cyclosiloxane. The
literature data on the polymerization of D4 in the presence
of KOH as a catalyst and 1,3-bis(aminopropyl)tetramethyl-
disiloxane as a functional endblocker [11] were chosen.

The present paper refers to the use of neural networks
as efficient and simple tools for process modelling,
recommended especially when the reaction mechanism
is incompletely known. This type of modelling
methodology is applied for the first time in the siloxane
polymer field.

Experimental part
The general outline for the preparation of functional

oligomers is shown in scheme 1.
This paper refers the synthesis of equilibration reaction

kinetics of D4 in the presence of functional end-blockers
[11]. The considered experimental data are presented in
Table 1. Conditions in which these data were obtained are:

bulk polymerization of octamethylcyclotetrasiloxane (D4)
(without a solvent), in presence of potassium silanolate
(hydroxide) as a catalyst, and 1,3-bis(aminopropyl)tetra-
methyldisiloxane (DSX) as an end-blocker, by stirring under
argon, at pre-established temperature. In presence of the
cyclosiloxane, KOH forms potassium siloxanolate, which
is the proper catalyst. Samples were removed (withdrawn)
at various times and analyzed by high-performance liquid
chromatography for the D4 content and by capillary gas
chromatography for the disiloxane concentration. In Table
1, the experimental data show the effect of catalyst
concentration on the disappearance of D4 at 160°C and,
also, the decrease of the aminopropyl disiloxane
concentration. As can be seen, the rate of disappearance
of D4 increased with increasing KOH concentration. In the
reaction containing 0.126 mole % KOH, equilibrium
concentration of D4 is attained faster than at lower catalyst
levels. The reaction rate of DSX in the presence of
potassium siloxanolate (KOH) is significantly slower as
compared with D4 reaction rate.

Neural network modeling
Generally speaking, a neural network consists of

processing neurons and information flow channels
between the neurons, usually called „interconnections”.
Each processing neuron calculates the weighted sum of
all interconnected signals from the previous layer plus a
bias term and then generates an output through its
activation transfer function.

A general problem of a neural network modelling
represents the transformation of a set of inputs into a set
of outputs. The neural network model is obtained by  trying,
with   input/output pairs, which have to be related by the
transformation which is being modeled. The adjustment
of the neural network function to experimental data
(learning process or training) is based on a non-linear
regression procedure. Trying is done by assigning random
weights to each neuron, evaluating the output of the
network and calculating the error between the output of
the network and the known results by means of an error
or objective function. If the error becomes too large, the
weights are adjusted and the process goes back to evaluate
the output of the network. This cycle is repeated till the
error become low or the stop criterion is satisfied [12].

The main advantage of a neural network is the capacity
in generalization from the examples to other inputs that
were not seen yet. As a rule, the model is sought from an
available set of data that clearly contain a number of very
interesting relationships, feature correlations and other
information, which cannot be deduced in a straightforward
manner from the first principles, by theoretical calculations
or even with numerical methods.

Scheme 1. Preparation of functional siloxane
oligomers
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Table 1
EXPERIMENTAL DATA FOR THE DISAPPEARANCE OF D4 AND DSX AT DIFFERENT

CONCENTRATIONS OF CATALYST

The architecture of a neural network has to be
determined by the connections between the outputs of
neurons with each others. In a standard architecture, the
network’s neurons are laid in layers. There are possible
single and multiple architectures. A multi-layer neural
network has input, hidden and output layers consisting of
input, hidden and output neurons, respectively. The most
common neural network architecture is the multi-layer

feed-forward neural network (often called multi-layer
perceptron, MLP).

Speaking on the use of neural networks, many papers
apply a multilayered, feed-forward, fully connected
network of perceptions because the simplicity of its theory,
ease of programming and good results obtained. That due
to its universal function  considering that the  network’s
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topology has allowed to vary freely and it can take the
shape of any broken curve [4].

The main steps in neural network modeling are:
collecting the experimental data sets, splitting the data in
two parts by training and validation process (comparing
the network prediction to unseen data), developing the
neural network topology (training phase) and checking the
generalization capacity of the neural model (validation
phase).

Experimental data from table 1 were used to train
different neural networks, which model the D4
concentration as a function of reaction conditions (time
and catalyst concentration). 10 % of these data represent
validation data set and the remaining data is the training
data set.

In this work, the number of hidden layers and units was
established by trial and error method over a different range
of networks and selecting the one that best balanced
generalization performance against network size. The two
inputs of neural networks are: concentration of KOH (%
mole) and time (minutes) and the network output is
represented by the rate for disappearance of D4, expressed
by the ratio of [D4]/[D4]0, where [D4] is the concentration
of D4 at current time and [D4]0 is the initial concentration
of D4.

The best network topology was determined based upon
the mean squared errors (MSE) on the training data. The
network was trained using the backpropagation algorithm.
The training process is terminated at the point where the
network error (MSE) becomes sufficiently low.

The mean squared error was computed using the
following formula:

                  (1)

where: P is the number of output processing elements (in
this case, P = 1), N is the number of exemplars in the data
set, yij  is the network output for exemplar i at processing
element j, and dij  is the desired output for exemplar i at
processing element j.

Table 2 presents several neural networks trained with
experimental data from table 1. In table 2, r represents the
correlation between neural network predictions and
experimental data and  Ep is the percent error. For instance,
MLP(2:3:1) refers to a network with two inputs, one hidden
layers with three neurons and one output.

In order to compare the rate of disappearance of D4 with
that of DSX, another neural model was developed, having
time as input and two outputs – the concentrations of D4
and DSX reported to initial concentrations,  [D4]/[D4]0 and
[DSX]/[DSX]0. A MLP(1:10:2) was chosen from a set of
trained network, with MSE = 0.000654, r = 0.998 and Ep =
2.485 %.

Another type of application of neural networks consists
of the operating condition definition, starting from the end
properties of the polymer. This way we can also solve an
inverse problem such as: what is the catalyst concentration
which leads to an imposed value of [D4]/[D4]0, working in
a pre-established time interval? The inverse neural model
has two inputs: [D4]/[D4]0 and time and one output – the
catalyst concentration. Several tests in inverse neural
network modeling (table 3) led to an optimal topology MLP
(2:9:3:1) with MSE = 0.009131, r = 0.9909 and Ep = 3.75 %
for the training phase.

In this paper, a special software application -
NeuroSolutions - was used in order to project and obtain
predictions of neural networks.

Results and Discussion
The neural networks’ predictions were compared with

experimental data in order to verify how the direct neural
model learned the behaviour of the process.

The values of r being over 0.99, the MSE less than 0.0004
and Ep less than 3.4 % (table 2) prove the possibility of
making a good choice. In this sense, there were chosen
two network types: MLP(2:5:1) and MLP(2:10:1).Table 2

DIFFERENT TOPOLOGIES OF NEURAL NETWORKS IN DIRECT
MODELING

A topology with a single hidden layer with 10 neurons
was obtained, having a good performance in the training
phase: MSE = 0.000475, r = 0.999 and Ep = 3.05 % (table
2). Figure 1 presents the topology of MLP (2:10:1), chosen
for the process modelling.

The model MLP(2:5:1) can also be a good choice for
our purpose because it represents a combination between
simplicity and good performance in the training phase
(MSE = 0.000586, r = 0.999 and Ep = 3.41 %, in table 2).
The real test for the two neural networks will be the
validation phase, described in the next section of the paper.

Fig. 1. Representation of MLP(2:10:1).

Table 3
DIFFERENT TOPOLOGIES OF NEURAL NETWORKS IN INVERSE

MODELING

Good predictions are obtained with the two neural
models at the comparison between experimental training
data and network results: average relative errors of 3.1530
% and r = 0.9995 for MLP(2:5:1) and Ep = 2.6904 % and r =
0.9996 for MLP(2:10:1) (table 4). This fact is also
emphasized in figure 2, which present the MLP(2:5:1)
predictions of the three catalyst concentrations chosen.
Relative errors were calculated using the following
formula:
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  (2)

where p represents the parameter under study ([D4]/[D4]0),
indexes exp and net denote experimental and network
values.

As can be seen in figure 2, the rate of disappearance of
D4 increased with KOH concentration increasing . One can
notice that equilibrium concentration of D4 from the
reaction containing 0.126 mole % KOH, with respect to the
initial D4 concentration, is attained in about 15 min. The D4

Table 4
PREDICTIONS OF MLP(2:5:1) AND MLP(2:10:1) COMPARED WITH EXPERIMENTAL

 TRAINING DATA IN DIRECT MODELING

concentration has not reached equilibrium after 180 min
at lower catalyst level.

A key issue in neural network based process modelling
is the robustness or generalization capability of the
developed models, i.e. how well the model performs on
unseen data. Thus, a serious examination of the accuracy
of the neural network results requires the comparison with
experimental data, which were not used in the training
phase (previously unseen data). The predictions of the
networks on validation data are given in table 5.
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Fig. 2. The neural network predictions vs. experimental training data
using MLP(2:5:1) model for the variation in time of D4 concentration

at 160°C and different catalyst concentrations

Table 5
THE VALIDATION OF MLP(2:5:1) AND MLP(2:10:1) FOR THE D4 DISAPPEARANCE

Fig. 3. The neural network predictions vs. experimental training data
using MLP(2:10:1) model for the variation in time of D4

concentration at 160°C and 0.126 mole % KOH

Fig. 4. The neural network predictions vs. experimental training data
using MLP(2:10:1) model for the variation in time of DSX

concentration at 160°C and 0.126 mole % KOH

It can be noticed  a satisfactory agreement between the
two categories of data: experimental and neural network
predictions. For this reason, the projected neural model
MLP (2:10:1) with a value of average error of 3.849 can be
used to make predictions under different reaction
conditions, substituting the experiments that are time and
material consuming.

A second neural model, MLP(1:10:2) was developed in
order to appreciate comparatively the rates of
disappearance of D4 and DSX at 160°C in the presence of
catalyst. First of all, good agreement between experimental

training data and model predictions are registered (figs. 3
and 4).

As expected, the attack of potassium siloxanolate
catalyst on aminopropyl disiloxane proceeds much more
slowly than attack on D4. After 15 min, only 10 mole % of
the initial D4 was present, while 80 mole % of the initial
disiloxane remained.

The validation phase, which emphasizes the
generalization performance of the neural model, is given
in table 6.

Fig. 5. The neural network predictions vs. experimental training data
using MLP(2:9:3:1) model for the amount of catalyst which leads to

an imposed D4  concentration in a fixed time interval
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Supplementary information is obtained by inverse
neural modeling, that is an optimization problem
representing the identification of reaction conditions
(amount of catalyst), which lead to an imposed final
concentration of D4 in a pre-established time interval. Table
3 shows MLP(2:9:3:1) as the best topology for inverse neural
network model.

The comparison between the predictions on training
data and experimental data (fig. 5) put in evidence the
similarities that exist between them.

The validation stage with data presented in table 7
emphasizes the capacity of this network type to make good
predictions with an average error value of 2.64.

Conclusions
Simple architecture neural networks and simple

methods of establishing the networks’ structure are
proposed for kinetics modeling of the equilibrium anionic
polymerization of cyclic siloxanes. MLP(2:10:1) and
MLP(1:10:2) are proposed for direct modeling which
appreciates the rates of disappearance of D4 and DSX in
the presence of KOH as catalyst. An inverse neural
modelling is performed with MLP (2:9:3:1) and represents
the identification of reaction conditions (amount of
catalyst), which leads to an imposed concentration of D4
in a pre-established time interval.

Good predictions are obtained with neural models in
validation phase, so these neural networks give a very good
representation for the kinetics modelling of the equilibrium

Table 7
THE VALIDATION DATA SET OF MLP(2:9:3:1) IN INVERSE NEURAL NETWORK MODELLING

Table 6
THE VALIDATION PHASE FOR THE MODEL MLP(1:10:2) WHICH COMPARES

THE RATES OF DISAPPEARANCE OF D4 AND DSX.

anionic polymerization of cyclic siloxanes and they are able
to provide useful information for experimental practice.
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